aoc2020/day13.py

47 lines
1.8 KiB
Python

import aoclib
import math
DAY = 13
TEST_SOLUTION_PART1 = 295
TEST_SOLUTION_PART2 = 1068781
def part1(test_mode=False):
my_input = aoclib.getInputAsArraySplit(day=DAY, split_char=",", test=test_mode)
my_arrival = int(my_input[0][0])
bus_ids = [int(i) for i in my_input[1] if i != 'x']
waiting_times = [i - my_arrival % i for i in bus_ids]
min_waiting_time = min(waiting_times)
return min_waiting_time * bus_ids[waiting_times.index(min_waiting_time)]
def part2(test_mode=False):
my_input = aoclib.getInputAsArraySplit(day=DAY, split_char=",", test=test_mode)
bus_ids = {i: int(v) for i, v in enumerate(my_input[1]) if v != 'x'}
# utilizing the Chinese Remainder Theorem we are searching for x = i (mod bus_ids[i]) for all i
# watch https://www.youtube.com/watch?v=ru7mWZJlRQg for an easy explanation
# finding the "left" part of each (mod x) part
base_multiplier = {i: math.prod(bus_ids.values()) // v for i, v in bus_ids.items()}
# finding the "right" part of each (mod x) part utilizing the Extended Euclidean Algorithm
# s. Python documentation on pow(x, -1, y)
ext_multiplier = {i: pow(base_multiplier[i], -1, bus_ids[i]) for i in bus_ids}
# sum all multiplications together and add our offset
# EEA gives us base_multiplier[i] * x == 1(one!) (mod bus_ids[i])
# but we need base_multiplier[i] * x == i (mod bus_ids[i])
answer = sum(i * base_multiplier[i] * ext_multiplier[i] for i in bus_ids)
# and shrink it down
# for the -answer see pythons behaviour when calculating the mod of negative numbers with positive divisor
# also: http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html
lowest_common_multiple = math.lcm(*bus_ids.values())
answer = -answer % lowest_common_multiple
return answer