from __future__ import annotations from .coordinate import Coordinate, DistanceAlgorithm from enum import Enum from heapq import heappop, heappush from typing import Any, Dict, List, Union OFF = False ON = True Numeric = Union[int, float] class GridTransformation(Enum): FLIP_X = 1 FLIP_HORIZONTALLY = 1 # alias for FLIP_X; prep for 3d-transformations FLIP_VERTICALLY = 2 FLIP_DIAGONALLY = 3 FLIP_DIAGONALLY_REV = 4 ROTATE_RIGHT = 5 ROTATE_LEFT = 6 ROTATE_TWICE = 7 class Grid: def __init__(self, default=False): self.__default = default self.__grid = {} self.minX = 0 self.minY = 0 self.maxX = 0 self.maxY = 0 self.minZ = 0 self.maxZ = 0 self.mode3D = False def __trackBoundaries(self, pos: Coordinate): self.minX = min(pos.x, self.minX) self.minY = min(pos.y, self.minY) self.maxX = max(pos.x, self.maxX) self.maxY = max(pos.y, self.maxY) if self.mode3D: self.minZ = min(pos.z, self.minZ) self.maxZ = max(pos.z, self.maxZ) def rangeX(self): return range(self.minX, self.maxX + 1) def rangeY(self): return range(self.minY, self.maxY + 1) def rangeZ(self): return range(self.minZ, self.maxZ + 1) def toggle(self, pos: Coordinate): if pos in self.__grid: del self.__grid[pos] else: self.__trackBoundaries(pos) self.__grid[pos] = not self.__default def set(self, pos: Coordinate, value: Any = True) -> Any: if pos.z is not None: self.mode3D = True if (value == self.__default) and pos in self.__grid: del self.__grid[pos] elif value != self.__default: self.__trackBoundaries(pos) self.__grid[pos] = value return value def add(self, pos: Coordinate, value: Numeric = 1) -> Numeric: return self.set(pos, self.get(pos) + value) def sub(self, pos: Coordinate, value: Numeric = 1) -> Numeric: return self.set(pos, self.get(pos) - value) def mul(self, pos: Coordinate, value: Numeric = 1) -> Numeric: return self.set(pos, self.get(pos) * value) def div(self, pos: Coordinate, value: Numeric = 1) -> Numeric: return self.set(pos, self.get(pos) / value) def get(self, pos: Coordinate) -> Any: return self.__grid.get(pos, self.__default) def getOnCount(self) -> int: return len(self.__grid) def isSet(self, pos: Coordinate) -> bool: return pos in self.__grid def getCorners(self) -> List[Coordinate]: if not self.mode3D: return [ Coordinate(self.minX, self.minY), Coordinate(self.minX, self.maxY), Coordinate(self.maxX, self.minY), Coordinate(self.maxX, self.maxY), ] else: return [ Coordinate(self.minX, self.minY, self.minZ), Coordinate(self.minX, self.minY, self.maxZ), Coordinate(self.minX, self.maxY, self.minZ), Coordinate(self.minX, self.maxY, self.maxZ), Coordinate(self.maxX, self.minY, self.minZ), Coordinate(self.maxX, self.minY, self.maxZ), Coordinate(self.maxX, self.maxY, self.minZ), Coordinate(self.maxX, self.maxY, self.maxZ), ] def isCorner(self, pos: Coordinate) -> bool: return pos in self.getCorners() def isWithinBoundaries(self, pos: Coordinate) -> bool: if self.mode3D: return self.minX <= pos.x <= self.maxX and self.minY <= pos.y <= self.maxY \ and self.minZ <= pos.z <= self.maxZ else: return self.minX <= pos.x <= self.maxX and self.minY <= pos.y <= self.maxY def getActiveCells(self, x: int = None, y: int = None) -> List[Coordinate]: if x: return [c for c in self.__grid.keys() if c.x == x] elif y: return [c for c in self.__grid.keys() if c.y == y] else: return list(self.__grid.keys()) def getSum(self, includeNegative: bool = True) -> Numeric: grid_sum = 0 for value in self.__grid.values(): if includeNegative or value > 0: grid_sum += value return grid_sum def getNeighboursOf(self, pos: Coordinate, includeDefault: bool = False, includeDiagonal: bool = True) \ -> List[Coordinate]: neighbours = pos.getNeighbours( includeDiagonal=includeDiagonal, minX=self.minX, minY=self.minY, minZ=self.minZ, maxX=self.maxX, maxY=self.maxY, maxZ=self.maxZ ) if includeDefault: return neighbours else: return [x for x in neighbours if self.get(x) != self.__default] def getNeighbourSum(self, pos: Coordinate, includeNegative: bool = True, includeDiagonal: bool = True) -> Numeric: neighbour_sum = 0 for neighbour in pos.getNeighbours( includeDiagonal=includeDiagonal, minX=self.minX, minY=self.minY, minZ=self.minZ, maxX=self.maxX, maxY=self.maxY, maxZ=self.maxZ ): if neighbour in self.__grid: if includeNegative or self.__grid[neighbour] > 0: neighbour_sum += self.__grid[neighbour] return neighbour_sum def flip(self, c1: Coordinate, c2: Coordinate): buf = self.get(c1) self.set(c1, self.get(c2)) self.set(c2, buf) def transform(self, mode: GridTransformation): if self.mode3D: raise NotImplementedError() # that will take some time and thought if mode == GridTransformation.FLIP_HORIZONTALLY: for x in range(self.minX, (self.maxX - self.minX) // 2 + 1): for y in range(self.minY, self.maxY + 1): self.flip(Coordinate(x, y), Coordinate(self.maxX - x, y)) elif mode == GridTransformation.FLIP_VERTICALLY: for y in range(self.minY, (self.maxY - self.minY) // 2 + 1): for x in range(self.minX, self.maxX + 1): self.flip(Coordinate(x, y), Coordinate(x, self.maxY - y)) elif mode == GridTransformation.FLIP_DIAGONALLY: self.transform(GridTransformation.ROTATE_LEFT) self.transform(GridTransformation.FLIP_HORIZONTALLY) elif mode == GridTransformation.FLIP_DIAGONALLY_REV: self.transform(GridTransformation.ROTATE_RIGHT) self.transform(GridTransformation.FLIP_HORIZONTALLY) elif mode == GridTransformation.ROTATE_LEFT: newGrid = Grid() for x in range(self.maxX, self.minX - 1, -1): for y in range(self.minY, self.maxY + 1): newGrid.set(Coordinate(y, self.maxX - x), self.get(Coordinate(x, y))) self.__dict__.update(newGrid.__dict__) elif mode == GridTransformation.ROTATE_RIGHT: newGrid = Grid() for x in range(self.minX, self.maxX + 1): for y in range(self.maxY, self.minY - 1, -1): newGrid.set(Coordinate(self.maxY - y, x), self.get(Coordinate(x, y))) self.__dict__.update(newGrid.__dict__) elif mode == GridTransformation.ROTATE_TWICE: self.transform(GridTransformation.ROTATE_RIGHT) self.transform(GridTransformation.ROTATE_RIGHT) def getPath(self, pos_from: Coordinate, pos_to: Coordinate, includeDiagonal: bool, walls: List[Any] = None, weighted: bool = False) -> Union[None, List[Coordinate]]: f_costs = [] if walls is None: walls = [self.__default] openNodes: Dict[Coordinate, tuple] = {} closedNodes: Dict[Coordinate, tuple] = {} openNodes[pos_from] = (0, pos_from.getDistanceTo(pos_to), None) heappush(f_costs, (0, pos_from)) while openNodes: _, currentCoord = heappop(f_costs) if currentCoord not in openNodes: continue currentNode = openNodes[currentCoord] closedNodes[currentCoord] = currentNode del openNodes[currentCoord] if currentCoord == pos_to: break for neighbour in self.getNeighboursOf(currentCoord, True, includeDiagonal): if self.get(neighbour) in walls or neighbour in closedNodes: continue if weighted: neighbourDist = self.get(neighbour) elif not includeDiagonal: neighbourDist = 1 else: neighbourDist = currentCoord.getDistanceTo(neighbour, DistanceAlgorithm.MANHATTAN, includeDiagonal) targetDist = neighbour.getDistanceTo(pos_to) f_cost = targetDist + neighbourDist + currentNode[1] neighbourNode = (f_cost, currentNode[1] + neighbourDist, currentCoord) if neighbour not in openNodes or f_cost < openNodes[neighbour][0]: openNodes[neighbour] = neighbourNode heappush(f_costs, (f_cost, neighbour)) if pos_to not in closedNodes: return None else: currentNode = closedNodes[pos_to] pathCoords = [pos_to] while currentNode[2]: pathCoords.append(currentNode[2]) currentNode = closedNodes[currentNode[2]] return pathCoords def print(self, spacer: str = "", true_char: str = None): for y in range(self.minY, self.maxY + 1): for x in range(self.minX, self.maxX + 1): if true_char: print(true_char if self.get(Coordinate(x, y)) else " ", end="") else: print(self.get(Coordinate(x, y)), end="") print(spacer, end="") print()